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Abstract Computational methods are rapidly gaining impor-
tance in the field of structural biology, mostly due to the
explosive progress in genome sequencing projects and the
large disparity between the number of sequences and the
number of structures. There has been an exponential growth
in the number of available protein sequences and a slower
growth in the number of structures. There is therefore an urgent
need to develop computational methods to predict structures

and identify their functions from the sequence. Developing
methods that will satisfy these needs both efficiently and
accurately is of paramount importance for advances in many
biomedical fields, including drug development and discovery
of biomarkers. A novel method called fast learning optimized
prediction methodology (FLOPRED) is proposed for predict-
ing protein secondary structure, using knowledge-based poten-
tials combined with structure information from the CATH
database. A neural network-based extreme learning machine
(ELM) and advanced particle swarm optimization (PSO) are
used with this data that yield better and faster convergence to
produce more accurate results. Protein secondary structures are
predicted reliably, more efficiently and more accurately using
FLOPRED. These techniques yield superior classification of
secondary structure elements, with a training accuracy ranging
between 83 % and 87 % over a widerange of hidden neurons
and a cross-validated testing accuracy ranging between 81 %
and 84 % and a segment overlap (SOV) score of 78 % that are
obtained with different sets of proteins. These results are
comparable to other recently published studies, but are
obtained with greater efficiencies, in terms of time and cost.

Keywords Knowledge-based potentials . Machine
learning . Neural networks . Particle swarm optimization .

Protein secondary structure prediction

Introduction

Advances in mass-scale genome sequencing technologies
have resulted in the explosive growth of sequence information
resulting in the availability of millions of protein sequences
[1] while we have only about 80000 solved protein structures
(includingmany redundant structures) deposited in the protein
data bank [1], with an average yearly growth of just 10 %.
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Hence there is a large gap that needs to be filled in terms of
protein structure determination. Experimental protein struc-
ture determination by methods such as X-ray crystallography
and nuclear magnetic resonance (NMR) is expensive and time
consuming and not yet possible to apply on the genome scale.
Computational methods can predict protein structure cheaply
and easily, especially the secondary structures. Machine learn-
ing methods are useful for this purpose and once the training
models have been built from existing information, structure
predictions can be performed quickly and at low cost. Protein
secondary structure prediction has gained increasing impor-
tance in computational biology due to this growing demand
for large scale structure prediction, and also because it is often
a prerequisite to 3-D structure prediction. Hence there is a
significant need for more accurate and faster secondary struc-
ture prediction methods that would be beneficial for the pro-
tein modeling community.

Several computational methods, such as statistical methods,
hidden Markov models, nearest neighbor methods, support
vector machines and neural networks have been used success-
fully for secondary structure predictions. The popular GOR
secondary structure prediction method, [2–6] was based on
information theory and Bayesian statistics combined later with
evolutionary information. Nearest neighbor algorithms were
used by several groups [7–10]. Support vector machines
(SVM), based on statistical learning Theory [11], were also
used for the secondary structure predictions [12]. Machine
learning methods, particularly neural networks, which are
used in this study, have proven to be among the most success-
ful methods used for the secondary structure predictions.
Neural network based secondary structure predictors [13]
using evolutionary information from multiple sequence align-
ments (MSA) were introduced by several groups [6, 14–16].
The inclusion of this evolutionary information increases the
accuracy of prediction typically by about 10 %. Some of the
most successful prediction algorithms are the PHD method
[15], PSIPRED [17], PredictProtein server [18] and Jpred
[16], which uses hidden Markov model (HMM) profiles
[19]. Despite the many different methods and complicated
algorithms used for secondary structure predictions, the clas-
sification accuracies have hovered around 70 % for methods
that use stand alone algorithms and single sequences. The
threshold of 78 % has usually been surpassed for methods
that include evolutionary MSA as part of the prediction algo-
rithm. Inclusion of longrange interactions could, in principle,
improve accuracy [20, 21]. Many other methods have been
proposed recently [22–30]. A two-level mixed-modal SVM
(MMS) was used [31] for secondary structure predictions to
build a compound pyramid model (CPM) model to achieve
accuracies of up to 85.6 %, one of the highest accuracies
reported so far. In many of the methods, secondary structure
prediction is improved (some-times only slightly) by
including protein structure information, newer sequence and

evolutionary information through the use of complicated algo-
rithms and large computational resources. Our method
(FLOPRED) uses knowledge-based potential information cal-
culated by using the CABS algorithm [32], which captures
structural information for predicting probable structures. The
target protein information about sequence or structure similar-
ity to the template sequences that is used for data generation
has been removed in this study. Our main aim is to develop an
algorithm that learns from the information encoded in indi-
vidual protein sequences and predicts the three secondary
structure elements:α-helix, β-sheet and coil accurately. Other
aims are to determine i) the number of hidden neurons needed
for optimal classification and ii) the effect of the size and
composition of the proteins used for building the model, that
will provide the best generalization performance on indepen-
dent test samples. The main advantage of the present study is
that our model is very simple, requires fewer resources and
yields high accuracy with a simple single layer neural net-
work. The results from this algorithm are further optimized by
using an advanced PSO algorithm [33–38]. These features
make our algorithm highly efficient, accurate and far less
expensive to use, compared to other algorithms. These tech-
niques yield superior classification of the three secondary
structure elements, where the average cross-validated accura-
cies range from 81.3 % to 84.1 % and the segment overlap
score (SOV) [39, 40], (as described in Sect. S1.6 in the
supplementary materials), is 78 %, for two different sets of
proteins differing in sequence length. The robustness of
FLOPRED is illustrated by the successful differentiation be-
tween two different folds shared by a set of switch proteins
which differ by single amino acids and a set of small proteins
selected using the PISCES culling server [41] which yield an
average blind test accuracy of 84.4 % with an SOV score of
77 %. Our results are significantly better than those found in
the literature for studies which do not use evolutionary infor-
mation contained in multiple sequence alignments (MSA),
where historically an accuracy of 60-70 % was obtained. Our
results are better and are comparable to recent studies that
include MSA. Our method does not use MSA; however
structural information from the CATH [42] database that was
used in our studies, might be considered to indirectly encode
evolutionary information.

Data and methods

The protein sequences in the CB513 [16] dataset are used
together with knowledge-based potentials extracted by us-
ing the CABS [32] algorithm. A novel method called fast
learning optimized predictor (FLOPRED) is proposed for
predicting protein secondary structure using neural network-
based extreme learning machine [43–45] and particle swarm
optimization [33–37]. The FLOPRED algorithm is trained
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using two sets of proteins and its efficiency and robustness
are tested on two independent sets of proteins. The CB513
data set [16] is a collection of a set of 513 non-redundant
protein domains that have less than 30 % identity between
pairs of sequences. This is a standard protein dataset used by
many authors in protein secondary structure prediction. This
set provides the target sequences for modeling and testing
FLOPRED, after removing all sequences with sequence or
structure similarity with the CATH [42] structure templates
used for data generation. Data derived from the potential
energies of amino acids in these protein sequences were
encoded into three secondary structure elements using the
CABS force field [32]. CABS is a “versatile reduced repre-
sentation tool for molecular modeling” [32]. This algorithm
encodes both short-range and long-range interactions in
proteins to obtain 27 features that represent each sequence.
CABS stands for C-α-C-β-side group protein model where
C-α is the α-carbon and C-β is the β-carbon of an amino
acid backbone structure. This algorithm uses a high resolution
reduced model of proteins and the force field. It uses a lattice
model to represent hundreds of possible orientations of the
virtual α-carbon-β-carbon bond. It uses highly efficient repli-
ca exchange Monte Carlo for sampling the conformational
space. The knowledge-based potentials of the force field
include the following information:

– Protein-like conformational biases
– Statistical potentials for the short-range interactions
– A representation of main chain hydrogen bonds
– Statistical potentials describing the side chain interactions

The CABS model is an accurate lattice grid model and has
been used in many applications to represent proteins in a
reduced representation. Target sequences that had more than
70 % sequence identity (according to a global Needleman-
Wunsch sequence alignment [46] using BLOSUM62 [47]) or
structural similarity (according to HSSP [48], the homology-
derived secondary structure of proteins database of protein
structure-sequence alignments), were eliminated from the our
data set (see Sects. S1.3 and S1.4 for selection criteria). The
list of templates that are used is given in Sect. S1.1 in Tables
S8, S9 and the list of target sequences (CB513) is given under
Sect. S1.2 in Tables S10 and S11 in the supplementary mate-
rials. Description of the selection criteria and other details of
the data generating algorithm such as energy calculations and
creation of profile matrices are described next.

Algorithm for generation of knowledge-based potentials
using CABS force field

Reference energy for the target sequences

The CB513 dataset is used as the the target sequences for
potential energy extraction. It is a collection of non-

redundant protein domains [16] with no sequence identities
above 30 %. A reference energy is calculated for the target
sequences using a non-gapped threading procedure with 422
template structures. Data generation is computationally inten-
sive and might take two days for a small protein with fewer
than 100 amino acids, but it might take up to a week for a large
protein of 1500 residues, depending upon the speed of the
processor and other resources. Traditionally, orthogonal
binary representations and PSSM [17] profile matrices
(which are easily generated) are used to represent amino
acids in protein sequences. Since the energy calculations
using the CABS algorithm are very computationally intensive,
the time involved in generating the profile matrices can be a
limiting factor in using our algorithm. Our knowledge-based
potential data generation consists of the following steps:

– Download templates from the database.
– Collect secondary structure information using DSSP

[49] for each residue in each template.
– Compute contact maps for each template, including

both secondary and tertiary interactions.
– Thread a window of 17 residues for each template

sequence, onto each of the 422 templates and calculate
the reference energy for each residue in all templates.

– Thread a window of 17 residues for each of the target
sequences onto each template and calculate the reference
energy for each residue in all possible target sequences

– Read in the DSSP [49] information for the window of
residues for the template sequences that have the best
fit. This is done only for the central nine residues in
each window.

– Find the probability that the nine residues in the win-
dow will adapt to each of the three secondary structures,
to obtain 27 feature values.

Threading procedure for calculating reference energy

The template structures are used to search for a match with
the residues in the window. When a match is found, a
scoring function (unpublished) is used to assess and calcu-
late the degree of compatibility. For each of these place-
ments, the secondary and tertiary energy is calculated and
the lowest cases are retained. For example, for the fourth
amino acid in a target sequence, we might have obtained the
lowest energy (best fit), while it was centered on the 10th

amino acid of a template sequence.

Secondary structure assignment and creation of profile
matrices

The secondary structure assignments fromDSSP [49] are read
in for the template sequences for which the best fit was
determined. Although the window originally consisted of 17
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residues, only the values for the central nine residues are
utilized henceforth, for each of the three secondary structures,
α-helix, β-sheet and coil. The final profile matrix, consists of
one row of data for each of the residues represented by the
sequence of a given protein. Each row has a set of 27 features
(profile values), where the first nine features correspond to the
probability that the residues from the target sequence (the
central residue and four residues on each side), adopt an α-
helix (H) structure. The next nine features, correspond to the
probability that they adopt an extended β-strand (E) and the
last nine features correspond to the probability that they adopt
a coil (C) structure. The probability p of getting such a
threading match is then determined [50].

Calculation of reference energy

A reference energy is calculated using the CABS [32] force
field and short and long-range and hydrophobic sequence-
dependent interactions are calculated. R13, R14 and R15
potentials depend on the geometry and identities of the ith

and i+2nd, i+3rd and i+4th amino acids respectively.
Sequence-dependent (short-range) interactions for these resi-
dues are calculated. In order to include long-range interac-
tions, a contact energy is added to the previously calculated
energy values only for the aligned residues observed to be in
contact after the threading procedure has been performed. The
contact information comes from the contact maps established
for each template. A score for the hydrophobic and hydrophil-
ic amino acid matches between the template and target se-
quence fragments is also calculated [50]. The energy values
from these three calculations are weighted in the ratio 2:0 : 0:5
: 0:8 for the long : short : hydrophobic interactions respective-
ly. The selected weights are based on other computations for
3-D threading (unpublished), although it has been found that
the results are not very sensitive to these parameters.

FLOPRED - an extreme learning machine classifier

FLOPRED consists of the single layer feedforward network
based ELM classifier whose parameters are optimized with
PSO. Parameters such as the input weights and bias are
chosen randomly for a given number of hidden neurons.
By assuming the network output (Y) is equal to the coded
class label (T), the output weights (W) are calculated ana-

lytically as,W ¼ YY
y
h , where Y

y
h is the Moore-Penrose

generalized pseudo-inverse of the hidden layer output ma-
trix Yh. A sigmoidal activation function is used for the
hidden layer and a linear activation function is used for the
output neurons. Theoretically, ELM speeds up computations
considerably, providing for better generalization perfor-
mance [43] when compared to other methods such as sup-
port vector machines (SVM). A comprehensive overview of

ELM is given in Sect. S2 in the supplementary materials.
The features of the ELM can be summarized as:

– The smallest training error.
– Smallest norm of weights.
– Best generalization performance.
– Extremely rapid convergence compared to other neural

networks.

The simple steps involved in the ELM algorithm are:

– Given training samples and class labels (Xi, Yi), select
the appropriate activation function G(.) and the number
of hidden neurons;

– Randomly select the input weights (V), bias (b) and cal-

culate the output weightsW analytically whereW ¼ YY
y
h .

– Use the calculated weights (W, V, b) for estimating the
class label. We minimize the error between the observed
and predicted values of the validation set during training
and select those weights which give the best validation
accuracy. These parameters are stored and applied to an
independent test set. The final performance depends on
the choice of these parameters since overtraining or
under-training can result in poor test results. These are
the parameter values that are tuned by the PSO
algorithm.

– The estimated class label is calculated as

bci ¼ arg max yki :
k ¼ 1; 2; ::;C

ð1Þ

Random selection of input weights (V) and bias (b)
affects the performance of the ELM multiclass classifier
significantly [45] resulting in large variances in testing
accuracies. Proper selection of ELM parameters (input
weights, bias values, and hidden neurons) influences the
performance [51] of the ELM multiclass classifier favorably
by minimizing the error defined as:

H�;V�; b�f g ¼ arg min
H ;V ;b

Y � Tf g; ð2Þ

where Y is the observed class value and T is the calculated
output value of the class, for a given set of hidden neurons H
and input parameters V and b. The best weights and bias
values (marked with *) for the ELM can be found using
search techniques and optimization methods that are not
very computationally intensive. In this study, we use ad-
vanced particle swarm optimization for tuning the ELM
parameters (H, V, b).

Particle swarm optimization

An improved and extended family of advanced PSO algo-
rithms [33–35, 37, 52] have been used to tune the ELM
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parameters, the number of hidden neurons and some of the
PSO parameters. PSO is a global optimization algorithm in
that it is based on a sociological model that mimics the
natural behavior of individuals in groups, such as a flock
of birds, which collectively solve an optimization problem
such as reaching their nest. The main feature of this algorithm
is its apparent simplicity. PSO tries to find the best parameters
through intelligent sampling of a prismatic volume in the
model space to find the global minimum that will minimize
the error in classification. A comprehensive description of this
algorithm is given in Sect. S3 in the supplementary materials.
The use of advanced and efficient PSO algorithms has resulted
in significantly improved accuracy and robustness for all of
our predictions. The algorithm consists of the following steps:

1. Individuals, known as particles, are represented by vec-
tors whose length is the number of degrees of freedom
of the optimization problem, which is the dimension of
the problem (limited to 10 % of the number of training
samples * [the number of hidden neurons+bias]). This
is the only prior knowledge we require to solve any
optimization problem. While building the model we
look for solutions in this search space.

2. We start by randomly initializing the position ðx0i Þ and
velocities ðv0i Þ of a population of particles. The velocities
are the perturbations of the model parameters needed to
find the global minimum (assuming that it does exist and
is unique).

3. Initially the velocities are set to zero, or, they might be
randomized with values not greater than a certain per-
centage of the search space in each direction.

4. A misfit or cost function is evaluated for each particle of
the swarm in each iteration (classification error). We
might try to minimize this error. As time advances, the
position and velocity of each particle is updated, which
is a function of its own misfit and the misfit of its
neighbors.

5. At time-step k+1, the algorithm updates positions ðxkþ1
i Þ

and velocities ðvkþ1
i Þ of the individuals as follows:

vkþ1
i ¼ wvki þ f1ðgk � xki Þ þ f2ð1ki � xki Þ
xkþ1
i ¼ xki þ vkþ1

i
ð3Þ

with

f1 ¼ r1ag; f2 ¼ r2al ; r1;r2 ! Uð0; 1Þ;w; al ; ag 2 R: ð4Þ
li k is the best local position found so far for the ith particle

and gk is the best global position with respect to the whole
swarm (or within a neighborhood if local topology is used).
ω; al; ag are called the inertia and the local and global
acceleration constants, and these are the parameters we have
to tune for the PSO to achieve convergence. r1 and r2 are
uniform random numbers used to generate the stochastic

global and local accelerations, ϕ1 and ϕ2. Due to the
stochastic effect introduced by these numbers PSO trajectories
should be considered as stochastic processes. The determinis-
tic trajectories (which are the mean trajectories) of the PSO are
fully analyzed in reference [35], which is important to under-
stand the capabilities of the PSO algorithm.

Results and discussion

For classifications, we do a 3-class secondary structure as-
signment of the eight states in DSSP alphabet [49], where
helix (H) includes the three states: the regular α-helix H, the
extended 310 helix G and the compressed α-helix I; β-strand
(E) contains E and bridge B; and coil (C) consists of turns T,
bends S, blanks and C. FLOPRED is tested on four different
datasets which are described in Table S7. Initially, our algo-
rithm was tested on a small set of proteins, DS-1, that
contained 84 small proteins (with less than 120 residues)
selected from the CB513 dataset. Secondary structure predic-
tions using these proteins yield an average accuracy of 84.1 %
on a five-fold cross validation test. Then our algorithm was
tested on a larger set of big and small proteins, DS-2, that has
387 proteins selected from the CB513 dataset (see Sects. S1.3
and S1.4 for selection criteria). A five-fold cross-validation
test carried out with DS-2 yields an average testing accuracy
of 81.3 %. These studies also illustrate the sensitivity of the
classification results to the magnitude of the number of hidden
neurons used and the composition of the proteins used in
modeling FLOPRED. The optimal number of hidden neurons
within a given range is determined by PSO in addition to other
network parameters. For each set we try to find the best
number of hidden neurons which gives good generalization
performance and is achieved by minimizing the difference
between the training, validation and testing accuracies during
cross-validation tests which in turn optimizes the accuracies of
the predictions for the blind tests, as illustrated by our results.
This information will be useful for building future models
when new sequences are modeled. The parameters stored
during the cross-validated testing of DS-1 and DS-2 are used
on two sets of small proteins (DS-3 and DS-4). Results for
independent testing of FLOPRED on an interesting set of 25
very small (56 residues) and closely homologous switching
proteins (DS-3) yields a high average accuracy of 94.6 % for
the predominantly α-helix GA proteins and a lower average
accuracy of 75 % for the predominantly β-sheet GB proteins,
where GA and GB are two binding domains of Streptococcus
protein G [53–55]. An independent test on another set (DS-4)
of 78 small but non-homologous proteins (less than 120
residues with less than 20 % similarity) selected using the
PISCES culling server [41] yields an average accuracy of
84.4 %. Confidence levels of predictions are given for all
classification results.
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Results for DS-1

Five randomly selected independent sets are formed using
84 proteins, where four sets are made up of 17 randomly
picked proteins each while the fifth set has the remaining 16
proteins. All these sets have a representative mix of the three
secondary structure classes, α-helix, β-strand and coil. Each
set was used once as the validating set and once as the
testing set and three times as part of the training set. DS-1
consists of 6642 residues from 84 proteins; 3800 to 4250
residues (57 % of available data) were used for the training
model, 1100 to 1300 residues (21 %) were used for valida-
tion and the remaining 1200 to 1400 residues (22 %) were
used for testing. (Different number of residues are chosen
for each set during a random selection of proteins).
Hundreds of models are built using the training data that
are validated using the ELM algorithm and these parameters
are further tuned using PSO. The parameters for those
models which show high accuracies for the validation set
are retained (25 sets) and later applied to the test set for
secondary structure prediction. The best test accuracies
obtained during this study were 85.7 % using 1066 hidden
neurons and 85 % using 392 hidden neurons. These results
are given in Table S12 and illustrated in Figs. S8, S9, S10,
S11, and S12. We obtain an average training accuracy
ranging between 85.7 % to 96.4 % that correspond to a
wide range of hidden neurons between 310 and 1560. The
selection of hidden neurons is initially limited to a range
between 5 % and 30 % of the number of training samples
used. This study resulted in a validation accuracy ranging
between 82.3 % and 88.4 % and an independent test accu-
racy ranging between 82.1 % and 85.7 %, where each given
result was averaged over a five-fold cross-validation during
25 different runs (with the same data sets). Our aim is to
determine the number of hidden neurons that give the small-
est differences between the training, validation and test
accuracies. A model built with this criteria would be likely
to achieve better generalization performance on future un-
known samples. Accordingly, only 13 of the 25 sets of
results (Table S12) that were obtained were taken into
account in calculating the final results. The criteria for
selection of result sets was that the number of hidden neu-
rons be less than 425 (a conservative 11 % of training
samples) and the interval between the training, validation
and testing accuracies lie within 2 % to 5 % of each other.
Q3 training, validation and testing accuracies for these stud-
ies are given in Table 1. The final average (Q3) training
accuracy is 87.4 % with a standard deviation of 0.6 %. The
Q3 validation accuracy is 84.9 % (1 % std-dev) and Q3

testing accuracy is 84.1 % (1 % std-dev). The average
standard deviations calculated over these 13 sets of results
are very small, which illustrates the stability of FLOPRED
predictions. Table 1 also gives the sensitivity, specificity and

Mathew's correlation coefficients for the training, validation
and test accuracies. Coil has the highest sensitivity of
80.7 % and Mathew's correlation coefficient (MCC) of
67.1 % while α-helix has the highest specificity of 95.4 %.
The overall standard deviations for sensitivity, specificity
and MCC are 4.1 %, 1.4 % and 2.6 % respectively. The
confidence levels for these predictions are similar (or
higher) to those of DS-2 and hence are discussed in the next
section. The SOV score is observed to be the highest for α-
helix at 89.6 % which is quite close to its Q3 score of 90.1 %
which implies that they are predicted as an intact structure
without many breaks. The overall SOV score is 77.6 %
which is only 2 % less than other studies, as seen in Table 6.
The β-sheets are predicted fairly well at 76.4 % which is
only 3 % below the Q3 accuracy. The coil has the lowest
SOV at 72.2 % which is almost 10 % less than the Q3

accuracy. In this study we train the model using very small
proteins and test the results on small proteins also and find
that increasing the number of hidden neurons does not have
much effect on the accuracy.

Results for DS-2

The second set of data for this study consists of 387
small and large proteins selected from the CB513 set.
There were 63383 residues in the 387 proteins, which
were divided randomly into four sets of 77 proteins and one
set of 79 proteins. Each set had between 11215 and 13734
residues. Each of these sets was used once as the validation
and once as the testing set and three times as part of the
training set. The training set was divided into five sets, each
containing approximately 50 proteins. Each of these sets are
trained by FLOPRED and validated on the validation set.
These five sets of parameters are then stored and the

Table 1 Test results for DS-1 from a 5-fold cross-validation study.
3800 to 4250 residues were used for the training model, 1100 to 1300
residues were used for validation and the remaining 1200 to 1400
residues were used for testing. (Different number of residues are
chosen for each set during random selection of proteins). These results
are illustrated in Figs. S10, S11, and S12 and are further discussed
under results for DS-1, where the numbers given are percentages

a Overall scores are the Q3 scores, the average accuracy of prediction
for all three secondary structures.
b SOV is the the segment overlap score [39, 40], as described in
Sect. S1.6 in the supplementary materials.
cMCC is the Mathew's correlation coeficient.
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predictions for the same test set are determined during each
cross-validation. Classification of each residue in the test
set is determined by the maximum votes received by
one of the three secondary structure classes. The 5-fold
cross-validation was carried out using different sets of
hidden neurons which were limited in the range be-
tween 5 % and 30 % of the number of training samples.
Of the 150 sets generated, 50 sets belonging to ten cross-
validation runs were selected where the number of hidden
neurons was fewer than 10 % of the number of training
samples. These results are shown in Figs. S13 and S14. Only
these predictions are taken into consideration for further anal-
ysis. When all predictions (150 runs) were considered, the
overall confidence level actually decreased by 0.3 %, which
shows that there is no significant gain from using a larger
number of hidden neurons. Limiting the hidden neurons to be
less than 10 % of the number of training samples provides
adequate and better generalization performance. The results
for training, validation and testing are given in Tables S13
where the best test result of 83.4 % is obtained when 573
hidden neurons are selected and the three values are within
2.5 % of one another. The overall standard deviation is also
very low at 0.7 % over 50 sets of data. Table 2 shows the
results of a five-fold cross-validation study on DS-2, averaged
over 50 runs. These results are illustrated in Figs. 1 and S15.
Overall (Q3) training, validation and testing accuracies are
83.2 %, 81.2 % and 81.3 % respectively. Testing accuracies
are highest for α-helix at 90.1 % while β-sheet and coil show
73.7 % and 79.9 % respectively. Overall (Q3) values for
sensitivity, specificity and MCC are 68.3 %, 90.1 % and
60.7 % respectively. Coil has the highest sensitivity and
MCC at 78.3 % and 63.5 % respectively, while α-helix has
the highest specificity at 93.6 %. The standard deviations are
much lower for this study when compared to the DS-1 study,
where the model was built using small proteins (Table S12).
The SOV score is observed to be the highest for α-helix at
85.6 % which is 5 % less than its Q3 score of 90.1 %. The
overall SOV score is 78 % which is only 1.8 % less than other
studies, as seen in Table 6. The β-sheet does better at 75.8 %

which is only 2 % below its Q3 accuracy. Coil has the lowest
SOVat 73.4%which is almost 6.5 % less than its Q3 accuracy
but still less than the 10 % gap between the SOV score and
coil accuracy values obtained for DS-1. These numbers are
better and more uniform and closer to the individual accura-
cies and Q3 accuracy than the results seen earlier for DS-1.
Table S14 and Fig. S16 give the confidence levels for the
predictions made using DS-2. This table and figure show the
confidence level of predictions for the three secondary struc-
tures α-helix (H), β-sheet (E) and coil (C) along with the
overall Q3 values obtained under a 5-fold cross-validation
study using less than 800 hidden neurons. Percentage of
residues predicted over ten different confidence levels are
calculated (from 50 % to 95 %). α-helix (blue) has the highest
confidence levels of predictions, where 94.3 % of these resi-
dues are predicted with 50 % confidence and at the other
extreme, 84.5 % are predicted with 95 % accuracy. Similarly,
for β-sheet (green), 82.4% of these residues are predicted with
50 % confidence and at the other extreme, 62 % are predicted
with 95 % accuracy. For coil (red), 87.7 % of these residues
are predicted with 50 % confidence and at the other extreme,
69.4 % are predicted with 95 % accuracy. For overall (cyan)
accuracies, 88.1 % of all residues are predicted with 50 %
confidence and on the other extreme, 72.3 % are predicted
with 95% accuracy. In conclusion, we find that the results
for the DS-2 study using a mix of small and large
proteins from the CB513 provide better generalization
and smaller standard deviations, but the overall predic-
tion accuracy was slightly higher for the DS-1 study by
about 3 %. This might be due to the smaller size of the
proteins used for that study. We find that the α-helix
predictions are almost the same for both these studies
while the prediction accuracies for α-sheet and coil are
lower by 6.03 % and 2.6 % respectively, which con-
tribute to the lower overall accuracy. The true test for
the better model will be determined by how well the
stored parameters do on independent test sets.

Results for DS-3

A set of 25 protein sequences (DS-3) known as switch
proteins [54, 55], each consisting of 56 amino acid residues
provides a particularly interesting test set because the struc-
tures show a switch between a three helix bundle structure
and a four beta strand plus one helix structure for a change
of only one amino acid. These sequences are used in an
independent study of the sensitivity of the present method to
detect such a remarkable change from a single substitution.
This provides an important test of the efficacy of the
FLOPRED model. These proteins are listed in Table S15
and are detailed in Sect. S1.5. The secondary structure for
each of these proteins is predicted using the four models that
were built earlier with DS-1 (averaged over 25 sets of data)

Table 2 Testing results for DS-2 for a 5-fold cross-validation study,
averaged over 50 runs. Approximately 50000 residues were used for
the training model, 13000 residues for validation and the remaining
13000 residues were used for testing. These results are illustrated in
Figs. 1 and S15 and are further discussed under the results section for
DS-2
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and DS-2 (averaged over 150 sets of data). For each of these
studies, results obtained with different numbers of hidden
neurons - (high (A) and low (B)) were stored and used
during testing to see how the number of hidden neurons
used during modeling affects the test results. The parameters
for all cross-validation runs on DS-1 and DS-2 were stored
and used to predict the DS-3A and DS-3B sets separately.
The results discussed here are averaged over all these runs
for DS-3A and DS-3B which includes GA98 and GB98. We
aim to see how well FLOPRED differentiates between these
closely homologous switching proteins which differ from
each other so slightly but which individually take on two
different folds. These results are given in Table 3 and
illustrated in Figs. 4, S17 and S18. GA98 and GB98 proteins
differ only by a single amino acid residue (L45Y) where the
45th residue leucine (L) is substituted for a tyrosine (Y), but
these proteins have two different folds as described earlier
and switch folds when a single amino acid is switched from
one to the other. FLOPRED is able to differentiate between
the two different folds (results are given here only for
models built with DS-2) and predict the secondary structure
of GA98 protein with 91.1 % accuracy (51 correct predic-
tions with 5 errors) as shown in Fig. 2. (The figure and
sequence shown are for the rendering of the GA95 protein
since the PDB [1] file is available only for this protein, but
the errors marked are for the prediction of the GA98). The
erroneous predictions of the five residues are marked in
yellow in the figure and in black on the sequence given
above the figure, while the remaining 51 residues are pre-
dicted correctly and are shown in red for α-helix, white for
coil and turns are shown in green. The 7th and 8th residues
are erroneously predicted as α-helix instead of as coil, 52nd,
53rd residues are predicted as coil instead of as α-helix,

while 54th residue is predicted as β- sheet instead of as coil.
Out of 45 alpha-helix residues 43 are predicted correctly and
the two errors occur at the end of the α-helix, while the four
errors in the coil residues occur on both ends of this protein.
The GB98 protein has 56 residues [54, 55] and has a four
beta strand plus one helix structure. FLOPRED predicts the
secondary structure of this protein with 75 % accuracy (42
correct predictions with 14 errors), as shown in Fig. 3. (The
figure and sequence shown are for the rendering of the GB95
protein since the PDB [1] file is available only for this
protein, but the errors marked are for the prediction of the
GB98). The erroneous predictions of the 14 residues are
marked in yellow in the figure and in black on the sequence
given above the figure, while the remaining 42 residues are

Fig. 1 Results for 5-fold cross-validated
training, validation and testing accuracies
for 50 sets of DS-2 data for the three
secondary structures. The α-helix,
β-sheet and coil accuracies along with the
overall Q3 accuracies for 50 sets of data
are shown in Table S13. The average
standard deviations calculated over these
50 sets of results are very small and are
even lower than those for the DS-1 set.
The actual values are given in Table 2 and
are discussed further in the results section
for DS-2

Table 3 Prediction of secondary structures of a set of small switching
proteins. This table gives the prediction accuracies of four independent
studies conducted with the three helix bundle GA protein and the four
beta strand plus 1 helix GB proteins [54, 55] on four different models,
where higher (A) and lower (B) numbers of hidden neurons are used on
DS-1 and DS-2. Overall the accuracies for GA protein are better when a
good mix of small and big proteins are used for model building. These
results are illustrated in Figs. 4, S17 and S18 and are further discussed
under the results section for DS-3
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predicted correctly and are shown in red for α-helix, blue for
β-sheet. The 36th and 37th α-helix residues are erroneously
predicted as coil, and 23rd residue which is a β-sheet is
predicted as α-helix and all other erroneously predicted β-
sheet residues are predicted as coil. The α-helix prediction
accuracy is 84.3 % (10 out of 12 residues) and β-sheet

prediction accuracy is 72.3 % (32 out of 44 residues) for
an overall accuracy of 75 %. For the GA proteins we have an
overall QH accuracy of 95.5 %, QC accuracy of 81.8 % and
Q3 accuracy of 89.3 % using the models built with DS-1A.
When the same set of proteins are tested on DS-1B (where
fewer hidden neurons were used), we obtain a QH accuracy
of 84.4 %, QC accuracy of 81.8 % and Q3 accuracy of
83.9 %. Thus, reducing the number of hidden neurons seems
to lower the overall accuracy for GA proteins by 5.4 % when
they are tested on models built with small proteins. The
biggest impact is on the accuracy of α-helix which drops
by 6.7 % while the coil accuracy stays the same for all
models. The reduction in α-helix accuracy has a larger
impact on the Q3 accuracy since there are 45 α-helix resi-
dues compared to only 11 coil residues. We get much higher
results when the GA proteins are tested using the models
built with DS-2. The QH, QC and Q3 accuracies are 97.8 %,
81.8 % and 94.6 % for both models built with DS-2. Here
the overall accuracies and α-helix any improvement when
compared to the accuracies obtained on the models built
with DS-1. Reducing the number of hidden neurons does
not seem to have any effect overall for the GA proteins when
the training models are built with a mix of small and large
proteins.

The consensus predictions are obtained using all the
models that were built earlier with the DS-1 and DS-2 sets
and are shown in Figs. 4, S20 and S21 and in Table S15.
This study also indicates that the confidence levels with
which these predictions are made are higher when smaller
number of hidden neurons are used. These results are illus-
trated in Fig. 5, S16 and S19. For the GA proteins, we can
see that 100 % of α-helices are predicted with 65 % confi-
dence and 91.1 % of the residues are predicted with 95 %
confidence; 81.8 % of coil residues are predicted with 65 %
confidence and 27.3 % of the residues are predicted with
95 % confidence. Overall, 91.0 % of GA proteins are pre-
dicted with 50 % confidence and 59.2 % of all residues are
predicted with 95 % confidence. For the GB proteins, we can
see that 92.9 % of α-helices are predicted with 50 % confi-
dence and 85.7 % of the residues are predicted with 95 %
confidence; 88.1 % of β-sheet residues are predicted with
50 % confidence and 38.1 % of the residues are predicted
with 95 % confidence. Overall, 90.5 % of GB proteins are
predicted with 50 % confidence and 61.9 % of all residues
are predicted with 95 % confidence. The percentage of
residues correctly predicted for the GA and GB proteins
using the DS-2B data are given in Figs. S20 and S21. The
final predicted class for each residue is a consensus obtained
after testing the residues using parameters from 25 models
built with DS-1 and 150 models built with DS-2, whose
parameters were stored after training and validation. Figure
S20 shows the percentage of predictions (Y-axis) that were
predicted correctly for each residue in GA proteins. The 56

Fig. 2 FLOPRED predictions for GA98 protein. The GA98 protein has
56 residues [54, 55] and has a three helix bundle structure. FLOPRED
predicts the secondary structure of this protein with 91.1 % accuracy
(51 correct predictions with 5 errors). The erroneous predictions of the
five residues are marked in yellow in the figure and marked in black on
the sequence given above the figure, while the remaining 51 residues
are predicted correctly and are shown in red for α-helix, white for coil
and the turns are shown in green

Fig. 3 FLOPRED predictions for GB98 protein. The GB98 protein has
56 residues [54, 55] and has a four beta strand plus one helix structure.
FLOPRED predicts the secondary structure of this protein with 75 %
accuracy (42 correct predictions with 14 errors). The erroneous pre-
dictions of the 14 residues are marked in yellow in the figure and in
black on the sequence given above the figure, while the remaining 42
residues are predicted correctly and are shown in red for α-helix, blue
for β-sheet and the turns are shown in green. (Although some of the
coloring is rendered in white representing coil, this protein has no
residues classified as coil)
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Fig. 4 FLOPRED predictions for 25 switching proteins. This figure
gives FLOPRED's consensus prediction for 25 switch proteins [54, 55]
for each of the 56 residues (using parameters stored for DS-2 dataset),
with α-helices shown in blue, β-sheet in green and coil in red. The X-
axis show 27 values where the first and the last column represent the
secondary structures of the observed GA and GB proteins (OBS)
respectively, columns 2 through 13 represent predicted values for the
12 GA proteins and columns 14 through 26 represent predicted values

for the 13 GB proteins. The Y-axis shows the 56 amino acid residues.
Each row represents one amino acid but the labels are paired for clarity.
Most of the errors are misclassifications that represent α-sheet as coil
and vice-versa. The predictions for these proteins are given in Table 3.
It can be seen that the predictions are in the right direction overall, and
that there is a sharp differentiation between the predictions for the GA

and GB proteins, partly due to the difference between the number of α-
helix residues present in the two proteins

Fig. 5 Results for the GA proteins using a
model trained with the DS-2 data. This
figure shows the confidence levels for
predictions of the GA proteins, for
secondary structures α-helix (H - blue)
and coil (C - red) along with the overall
(cyan) Q3 values obtained under an
independent study using DS-2. These
results are discussed further in the
results section
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residues are represented on the X-axis. We have observed
that if the percentage of prediction falls below 39.6 % then
the predictions turn out to be erroneous. All the predictions
above this line are correct. There are only three errors in the
overall prediction of the GA proteins when tested using the
models built with DS-2B. (One of the predictions near the
borderline which separates the correct predictions from the
errors at the 40 % mark, given in Fig. S20, is also correct).
Most interestingly, the 45th residue, in GA98 and GB98, that
is a change in amino acid between leucine (L) and tyrosine
(Y), is correctly predicted with 100 % confidence in all four
studies, as shown in Fig. 4, S20 and S21 and in Table S15.
The consistency of the prediction of this switched residue
indicates that FLOPRED is able to discern this subtle dif-
ference and correctly predict the residue's secondary struc-
ture from its context even though the sequences differ very
slightly, by only a single residue.

The higher accuracies for GA proteins can be attributed to
the fact that 45 out of 56 residues belong to α-helix second-
ary structure. In contrast, the number of α-helix residues in
GB protein is only 14 while the number of β-sheet residues
is 42, and hence the contribution from the α-helices in terms
of overall accuracy is small. The SOV score for GA proteins
are observed to be highest for coil at 99.4 % compared to α-
helix at 92.8 % with an overall score of 93.9 %. There is
only one α-helix in this protein, and it spans 45 residues
while there are only 11 coil residues on the two ends of this
protein. The length and position of these secondary structure
elements might bias the SOV score interpretations. These
SOV scores were nevertheless better than those SOV scores
obtained where the models had been trained on small pro-
teins (DS-1), which had an overall score of only 26.3 % (not
shown in table) due to a fragmented alpha-helix prediction,
although the Q3 accuracy was misleadingly higher at
83.9 %. The higher SOV score of 93.9 % is obtained when
the switch proteins are tested with models built from a mix
of small and large proteins (DS-2) where the Q3 accuracy is
better and closer at 94.6 %, showing that it appears to be
important to have a good mix of small and large proteins to
train the model. Similarly, for the GB proteins, the QH, QE

and Q3 accuracies are 85.7 %, 71.4 % and 75 % for models
built using DS-1A, while the accuracies are 78.6 %, 64.3 %
and 67.9 % for QH, QE and Q3, respectively, when tested on
models built using DS-1B. There is a 7.1 % fall in accuracy
for all three values which indicates that the GB protein
predictions are sensitive to the number of hidden neurons
used if tested with models where only small proteins were
used. When the GB proteins are tested on models built with
DS-2A, the accuracies are 85.7 %, 69.1 % and 73.2 % for
QH, QE and Q3, respectively, while the accuracies are
85.7 %, 71.4 % and 75 % for QH, QE and Q3 when tested
on models built with DS-2B. There is no change in the
accuracy for α-helix while there is an increase of 2.4 %

accuracy for β-sheet and 1.8 % increase in overall accuracy,
when reduced number of hidden neurons are used for model-
ing. Hence, the reduction in hidden neurons seem to affect
only the β-sheet accuracy slightly when models are built with
small and large proteins and tested on the GB proteins. The
results for switch proteins are shown in Fig. 4. The predictions
indicate that the first 8 and the last 3 residues of the GA

proteins are coil (red) and the rest of them are α-helix (blue).
For the GB proteins, residues 23 through 36 are α-helix (blue)
while the rest of the residues are β-sheet (green). This figure
shows that most of the errors are misclassiffications of β-sheet
(green) as coil and vice-versa, although some residues are
misclassiffied as α-helix. The SOV score for GB proteins are
observed to be highest for α-helix at 85.7 %, which is the
same as their individual accuracies compared to SOV for beta-
sheet at only 69.9 %, which is 2 % lesser than its individual
accuracy of 71.4 %, while the overall SOV score of 74 % is
only 1 % less than its Q3 accuracy of 75 %. There are four β-
sheets in this protein which span 42 residues while there are
only 14 α-helix residues which are in the middle of this
protein. These SOV scores are nevertheless better than for
those SOV scores obtained with results where the models had
been trained on small proteins (DS-1), where the overall score
was only 21 % due to a much fragmented α-helix SOV score
of 52 % and β-sheet score of only 17 % (not shown in the
table) although the Q3 accuracy was misleadingly higher
at 70 %. The higher SOV score of 74 % was obtained
when the switch proteins are tested with models built from a
mix of small and large proteins (DS-2B with fewer hidden
neurons), while the Q3 accuracy is slightly better and closer at
75 %.

In conclusion, we see that the models built with only
small proteins provide lower prediction accuracies while
models built with training sets containing a homogenous
mixture of small and large proteins yield better performance
when tested on GA proteins, while GB proteins appear not to
be very sensitive to the sizes of proteins used in the models
and they give the same accuracies for both cases. These
studies also show that it is important to have a good
mix of small and large proteins to train the model for good
generalization even if the protein has a larger number of
residues belonging to one type of secondary structure element
compared to others.

Results for DS-4

A set of 78 proteins (6605 residues) are selected using the
PISCES culling server [41] with the criteria that they are less
than 120 residues with a percentage identity less than 20 %,
resolution cutoff of 1.8 angstroms and an R-factor cutoff
which is less than 0.3. These proteins are tested using the
FLOPRED models built with DS-1 and DS-2. This is a
highly diverse set and differs significantly from the
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switching proteins that are all very similar to one another
and differ only by a few residues (Table S15). The proteins
in DS-4 have less than 20 % similarity with each other
(Table S16). The same models that were used to test DS-3
are used to test DS-4, as described earlier and test results are
averaged over all runs with DS-4. We aim to see whether
FLOPRED can efficiently predict secondary structures
results for predictions of secondary structures for the DS-4
proteins are given in Table 4 and illustrated in Fig. 6. This
table gives the prediction accuracies for four independent
studies conducted with DS-4 proteins with four different
models, DS-1A, DS-1B, DS-2A and DS-2B, where large
(A) and small (B) numbers of hidden neurons are used in
DS-1 and DS-2. When large (A) number of hidden neurons
are used, they are limited to be between 5 % and 30 % of the
number of training samples used. This number could be as
high as 1560 for DS-1 and 2250 for DS-2. When smaller
number of hidden neurons are used (B) they are limited to
be between 5 % and 11 % of the number of training samples.
This number could be as high as 425 for DS-1 and 760 for
DS-2, depending on the number of residues present in the
proteins selected for training the model. We observe that the
accuracies for α-helices are highest for all sets compared to
coil and β-sheet and Q3 accuracy is higher for the DS-2 than
it is for DS-1 by almost 7 %. Notably, the increase in
accuracies for the DS-2 set originates from improved accu-
racies in β-sheet (11 %) and coil (8 %) and to a smaller
(2 %) extent in the α-helix predictions. Overall the accura-
cies for these proteins are at 84.2 % and 84.4 % for the two
subsets of DS-2 where a good mix of small and large
proteins are used for model building and do not seem to
be sensitive to the number of hidden neurons used, as
observed previously for the switching proteins also. The
SOV score is only 45.3 % when tested on DS-1, while the
corresponding Q3 accuracy is much higher at 77.8 %. The
SOV score improves signifficantly when tested on models
built with the DS-2 model that has a mix of small and large
proteins. The SOV score is highest for α-helix at 82.9 %,
78.3 % for β-sheet and 71.4 % for coil, with an overall score
of 76.9 %, which is still 8 % less than the Q3 accuracy of

84.4 %. These results are illustrated in Fig. 6. Average
confidence levels for DS-4 using models built with DS-2
are given in Table 5 for each of the three secondary struc-
tures and overall Q3 values. These results are illustrated in
Fig. S22. α-helix has the highest confidence levels of pre-
diction where 90.5 % of these residues are predicted with
65 % confidence and at the other extreme, 86.6 % are
predicted with 95 % confidence. For β-sheet, 75.8 % of
these residues are predicted with 55 % confidence and at
the other extreme, 62.7 % are predicted with 95 % confi-
dence. For coil, 81.5 % of these residues are predicted with
55 % confidence and at the other extreme, 66.6 % are
predicted with 95 % confidence. For overall Q3 values
82.9 % of all residues are predicted with 55 % confidence
and on the other extreme, 72.0 % are predicted with 95 %
confidence. The actual values are given in Table 5. Finally,
Figs. S23 and S24 give an analysis of the number of resi-
dues predicted correctly for confidence levels from 5 %
through 95 %. The final predicted class for each residue is
a consensus obtained after testing the residues using parame-
ters from 25models built with DS-1 and 150models built with
DS-2, whose parameters were stored after training and vali-
dation. This histogram shows the number of residues (Y-axis)
predicted correctly at different levels of percentage accuracy
given on the X-axis. Out of 6605 residues, we can see that
almost about 340 residues are predicted with 55 % confidence
and about 2700 residues are predicted with 95% accuracy and
the remaining residues at different levels of confidence. In Fig.
S24, we can see that almost 100 residues are predicted within
a range of accuracies between 15 % and 85 % confidence and
about 5000 residues are predicted with 95 % accuracy.

Comparison of FLOPRED with other secondary structure
prediction methods

We now compare FLOPRED DS-1 results with those studies
in literature that use the CB513 dataset for secondary structure
prediction (Table 6). All the methods that are listed include
multiple sequence (evolutionary) information, to develop their
models whereas we use information derived from protein
sequences and knowledge-based potentials calculated using
the CABS algorithm. Some of these studies also use very
elaborate algorithms while our model uses only a single
layer neural network with Particle Swarm Optimization.
The overall Q3 training, testing and validation accuracies are
87.4 %, 84.9 % and 84.1 % respectively. Except in one case,
our average testing accuracy of 84.1 % is higher than the
accuracies found in literature. Our method achieves between
8.3 % and 4.1 % increase in Q3 results compared for most
previous methods and is only slightly below (1.4 %) the CPM
[31] method that has the highest Q3 reported accuracy
(85.6 %), but CPM uses a much more elaborate algorithm to
obtain this effeciency. CPM predicts protein secondary

Table 4 Prediction of secondary structures for the diverse DS-4 pro-
tein set. This table gives the prediction accuracies and SOV scores for
four independent tests conducted with DS-4 proteins using four differ-
ent models where large (A) and small (B) numbers of hidden neurons
are used from DS-1 and DS-2. These results are illustrated in Fig. 6 and
are further discussed in the results section for DS-4
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structure using a multi-layered approach which integrates
several methods to produce the final results. One of our
studies also achieves the highest accuracy of 85.7 % when
1066 neurons are selected, but we have taken a conservative
approach to limit the number of hidden neurons to be less than
11 % of the number of training samples in order to achieve
better generalization performance. Table 1 and Fig. S11, gives
the individual secondary structure accuracies for α-helix, β-
sheet and coil. The training, testing and validation accuracies
are the highest in this study for α-helix at 92.2 %, 90.2 % and
90.1 % respectively. The training, testing and validation

accuracies for β-sheet are 83.6 %, 81 % and 79.8 % respec-
tively while those for coil are 86.3 %, 83.6 % and 82.6 %
respectively. These results are higher compared to other
results found in the literature (with one exception) as seen in
Table 6. FLOPRED's α-helix and β-sheet testing accuracies
are 2.5 % and 3.0 % higher, while the accuracy for coil is
4.4 % less compared to CPM. All other results for secondary
structures cited in this table are less than the accuracies
obtained by FLOPRED. Table 1 and Fig. S12 also show the
sensitivity, specificity and Mathew's correlation coeficient
calculated from the 13 sets of selected results. Similarly, the
other metrics seen in this table such as, 95.4 % specificity for
α-helix, 80.7% sensitivity for coil and aMatthew's correlation
coeficient of 67.1 % for coil are also higher for the FLOPRED
DS-1 study compared to those found in the literature. These
higher accuracies can be attributed to the learning capabilities

Fig. 6 Results of an independent study of the DS-4 proteins on DS-1
and DS-2 data using a wide range of hidden neurons. This figure shows
that the α-helix (H - blue) accuracies are higher than those for β-sheet
(E - green) and coil (C - red) for all four sets. The overall accuracy
(cyan - Q3) is higher for the DS-2A and DS-2B sets and there seems to
be less sensitivity to the number of hidden neurons used for models

based on DS-2A and DS-2B, since there is only a 0.17 % difference in
accuracy between these results. Predictions using models built with a
mix of small and large proteins perform better than those predictions
which were obtained using models which were built using data con-
sisting of only small proteins (DS-1). The actual values are given under
Table 4 and are discussed further in the results section for DS-4

Table 5 Confidence levels for predictions for DS-4 proteins using the
DS-2 based model. This table gives the average confidence levels for
secondary structure predictions for DS-4 proteins for each of the three
secondary structures and the overall Q3 confidence levels under an
independent study. These results are illustrated in Fig. S22 and are
further discussed under the results section

Conf-level % α-helix % β-sheet % Coil % Overall (Q3)%

1 5 94.7 85.3 89.9 90.0

2 15 93.7 82.9 87.6 88.0

3 25 92.8 80.3 85.3 86.1

4 35 92.2 79.3 83.7 85.1

5 45 91.9 77.8 82.6 84.1

6 55 91.3 75.8 81.5 82.9

7 65 90.5 73.7 79.7 81.3

8 75 89.4 70.2 76.8 78.8

9 85 88.4 67.2 73.6 76.4

10 95 86.6 62.7 66.6 72.0

Table 6 Comparison of FLOPRED predictions against other second-
ary structure predictions. This table compares the results of the two
data sets used by FLOPRED with some other popular secondary
structure prediction studies in the literature that also have used the
CB513 dataset (*exceptions: PHD method used the RS126 set and
SPINE X used a dataset of 1833 proteins). FLOPRED uses only
sequence and knowledge-based potential information, but still has
results comparable or better than the best results from the literature
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of the ELM algorithm and the advanced optimization techni-
ques offered by the PSO algorithms [37] that were used to tune
the parameters of the neural network. For the DS-2 study, the
α-helix testing accuracies are still the highest compared to
other studies while the β-sheet accuracies are lower only in
comparison with those of CPM and DS-1 set. Coil accuracies
do not fare so well compared to previous studies, and the
overall accuracy is 4.3 % lower than the CPM study and
2.9 % lower than in the DS-1 study. The SOV scores are
77.6 % for DS-1B set which is between 1.1 % and 6.8 %
higher than the first four studies listed, 2.2 % lesser than the
CPM study, 1.4 % lesser than the SPINE X study. The SOV
scores for DS-2B are 78%,which is between 1 and 7% higher
than the first four studies listed, 1.9 % lesser than the CPM
study and 1% lesser than the SPINEX study.We are unable to
make similar comparative studies for DS-3 and DS-4 with
other studies in the literature since it is difficult to find a study
which uses the same proteins. Hence we compare them only
with one another. In comparing the results for the independent
studies on DS-3 and DS-4 we see that predictions for α-helix
structures do well in both these studies. These predictions are
much higher for GA proteins at 97.8 %, followed by 91.6 %
for DS-4 (6 % lower) and only 75 % for GB proteins (when
lower number of hidden neurons are used andmodeled using a
mixture of small and large proteins). Similarly, the overall Q3

accuracies are higher for GA proteins at 94.6 % followed by
DS-4 at 84.4 (10 % lower), and they are even lower for GB

proteins at 75 %. The higher accuracies for GA proteins can be
attributed to the predominance ofα-helices in the GA proteins.
The accuracies obtained in tests on DS-4 are comparable with
the cross-validation accuracies for DS-1 at 84.1 %. DS-4
accuracies are higher than those obtained for DS-2 set by
almost 3 %. Notably, this increase came from improved accu-
racies in β-sheet (11 %) and coil (8 %) which might indicate
that a good mix of big and small proteins in the training set
can help to obtain better results for predicting β-sheet and coil
secondary structures.

Conclusions

FLOPRED has performed evenly on small and large pro-
teins from four different data sets, where three of these had
only small proteins and the fourth one had a mixture of
small and large proteins. So, FLOPRED gives somewhat
better results for those proteins with predominantly α-helix
structures and lower accuracy for structures that have pre-
dominantly β-sheet structures such as the GB proteins and it
seems to do fairly well on a randomly selected set of
proteins that have similar lengths but have a more homog-
enous mix of secondary structures. FLOPRED has SOV
scores comparable to some of the best prediction servers
available today. On the whole FLOPRED performs best

when the proteins used for developing the computational
model include a mixture of small and large proteins and a
smaller number of hidden neurons is used. FLOPRED has
good prediction capabilities for α-helices but somewhat
lower prediction accuracies for β-sheet and coil. We have
also investigated the contribution of the 20 amino acids to
the prediction accuracies which might be used to improve
the results.
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